Как умножать в столбик

Решение задач с многозначными числами

Работать с многозначными числами устно бывает сложно. Мы привыкли записывать решение в строчку, а вычисления выполнять  столбиком на черновике. Сегодня мы научимся правильно оформлять  задачу, записывая вычисления столбиком сразу в тетрадь.

Задача

В пекарне «Горячий хлеб» испекли 345 булок ржаного хлеба, 568 булок белого хлеба, 875 сладких булочек. Сколько всего испекут хлебобулочных изделий  за месяц (31 день), если ежедневно будут выпекать одинаковое количество?

Сделаем краткую запись задачи.

Вы уже догадались, что каждое число нужно умножить на 31 и полученные произведения сложить.

Запишем все вычисления столбиком. Правильно оформим пояснения. Посмотрите, как выполнена запись  в тетради ученика 4 класса.

1 способ.

Ребята, а можно ли решить эту задачу другим способом?

Сначала сложить количество всех хлебобулочных изделий, испеченных за один день, а затем полученное число умножить на 31.

2 способ

Какой способ вам понравился больше? Второй способ можно назвать рациональным, так как он гораздо короче и удобнее.

Задачу о работе мебельной фабрики решите самостоятельно. Сделайте краткую запись. Запишите вычисления столбиком в тетради, правильно оформите пояснения и ответ. Сравните свои записи с образцом.

Задача

На мебельной фабрике изготовили за один день 122 стола и 475 стульев. Сколько изготовят столов и стульев за месяц февраль (28 дней).

Вы хорошо потрудились. Молодцы! Вернемся к животным-долгожителям, с которых мы начали наш урок.

Это интересно! Гренландские киты находятся под угрозой вымирания. Некоторые киты доживают до 200 лет. Ученые установили, что киту-рекордсмену было 211 лет. Тигровый питон – очень крупная неядовитая змея, которая хорошо лазает по деревьям. В неволе питоны живут около 20-25 лет, а в природе доживают до 100 лет. Сухопутные черепахи в среднем живут около 20-50 лет, но есть экземпляры, которые при благоприятных условиях могут достигать возраста 200 лет!

Решите шуточную задачу на смекалку от сухопутной черепахи.

Задача на смекалку

Черепаха в жаркий день решила искупаться. Она сняла свой панцирь и положила на песчаный берег. Думает черепаха: «Сейчас переплыву речку три раза и довольно!». Как вы, ребята, думаете, найдет ли черепаха свой панцирь на берегу и почему?

Ответ: черепаха не обнаружит свой панцирь на берегу, потому что задумала переплыть реку три раза. Значит, она окажется на противоположном берегу.

На уроке мы научились умножать столбиком, решать задачи с многозначными числами, правильно оформлять решение.

До новых встреч! А теперь проверьте свои знания.

Умножить двузначное на однозначное число столбиком

Как вообще как умножать в столбик!? Начнём с самого простого! Будем умножать двузначное на однозначное число столбиком

Для примера умножим 36 на 8

Выравниваем числа по правому краю, чтобы крайние правые цифры были друг под другом.

Берем первый столбец и вторую цифру второго числа(8) умножаем 6 * 8 = 48.

Результат сносим под черту, чтобы крайняя цифра оказалась под цифрой которую умножали(6), выделено красным.

Берем вторую цифру справа верхнего числа (3) и умножаем на 8, 3 * 8 = 24.

Результат сносим за черту, чтобы крайняя правая цифра результата, оказалась под цифрой, которую умножали(3), выделено зеленым.

Далее нам остается сложить каждый столбик, крайний правый столбец, там находится одна цифра 8, сносим её без изменений, под вторую горизонтальную линию.

Второй столбец справа 4 + 4 = 8, сносим 6 под вторую черту.

Третий столбец справа, там находится 2, сносим двойку без изменений.

Умножение суммы на число

Задание. Посчитайте и запишите решение на вопрос: сколько квадратов в прямоугольнике?

Вариант 1. Рассуждайте так: в ряду шесть синих квадратов плюс три красных квадрата. Рядов 4. Значит, запишите решение:

Сумма в скобках равна девяти. 9 ∙ 4 = 36. Это табличное умножение.

Вариант 2. Количество квадратов подсчитайте другим способом. Узнайте, сколько синих, потом, сколько красных, полученные результаты сложите.

Таким способом удобно умножать большие величины.

Любое двузначное число легко записать как сумму разрядных слагаемых: круглых десятков и единиц.

Умножайте сначала десятки, потом единицы, произведения складывайте.

Как это сделать, рассмотрите на примере.

Сумму десяти и пяти умножим на шесть.

Это распределительное свойство умножения суммы на число.

Правило умножения суммы на число запишите буквенным выражением.

За внимание награждаю вас оранжевой лентой. Идите по маршруту дальше

Идите по маршруту дальше.

Запись множителей при умножении в столбик.

Начнем с правил записи множителей при умножении столбиком.

Второй множитель записывается под первым множителем так, что первые справа цифры, отличные от цифры , располагаются друг под другом. Снизу под записанными множителями проводится горизонтальная линия, а слева ставится знак умножения вида «×». Приведем примеры правильной записи множителей при умножении столбиком. Ниже показаны записи в столбик произведений чисел 352 и 71, 550 и 45 002, а также 534 000 и 4 300.

С записью разобрались.

Теперь можно переходить непосредственно к процессу умножения двух натуральных чисел столбиком. Сначала рассмотрим умножение многозначного числа на однозначное число. После этого разберем умножение столбиком двух многозначных натуральных чисел.

Понятие десятичной дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

Вернемся к обыкновенным дробям позже, а сейчас обсудим десятичные дроби. Их знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

  • 0,8
  • 7,42
  • 9,932

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Принципы умножения десятичных дробей

С десятичными дробями можно производить те же действия, что и с любыми другими числами: складывать и вычитать, делить и умножать. В этом блоке узнаем, как умножать дроби.

Свойства умножения десятичных дробей
  1. Переместительное свойство умножения — от перестановки мест множителей произведение не изменяется.
    ab = ba
  2. Сочетательное свойство умножения — чтобы умножить число на произведение двух чисел, нужно сначала умножить его на первый множитель, затем полученное произведение умножить на второй множитель.
    (ab)c = a(bc)
  3. Распределительное свойство умножения относительно сложения — чтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить.
    a(b + c) = ab + ac
  4. Распределительное свойство умножения относительно вычитания — чтобы умножить разность на число, можно умножить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе.
    a(b — c) = ab — ac

Умножение десятичных дробей друг на друга можно упростить и просто умножить натуральные числа. Главное — правильно поставить запятую в ответе.

Если в задаче даны десятичные дроби с разными знаками — используем правило умножения отрицательных чисел. Как быстро запомнить:

«−−» минус на минус дает плюс
«−+» минус на плюс дает минус
«+−» плюс на минус дает минус
«++» плюс на плюс дает плюс

Числа с единицей и нулями (10, 100, 1000 и т. д.) называются разрядными единицами, так как цифра 1 — единственная значимая цифра в числе и от ее местоположения зависит количественное значение числа

Важно запомнить правила для умножения и деления на разрядную единицу:

  • Чтобы умножить число на разрядную единицу, достаточно к числу справа дописать столько нулей, сколько их содержит разрядная единица.
  • Чтобы разделить число на разрядную единицу, достаточно от числа справа отбросить столько нулей, сколько их содержит разрядная единица.

Деление двузначного числа на однозначное

Ребята, вы меня узнали? Люблю наряжаться на маскарад. Вот прицепил такие усы, думал, что буду похож на фокусника. Чудеса начинаются.

Такие задания называют примерами с «усиками». Да, да, но усики носят не люди, кто делит, а сами примеры. Рисовать их нужно простым карандашом, а когда научитесь быстро считать, то просто представляйте в голове.

Устное деление двузначного на однозначное

Задание 1.

Пусть надо решить, сколько будет

К «усикам» запишем такие два слагаемых, которые делятся на 8, а в сумме дают 96.

Самое главное — это не ошибиться в подборе первого «усика». Надо запомнить, что он всегда больше, чем второй. Ищем его, умножая 8 на 10. Если не подойдет, то будем умножать на 20, на 30. Главное, чтобы было круглое число.

Все понятно? Будем тренироваться.

Задание 2.

Задание 3.

Попробуем разделить 90 на два. «Первый усик» явно не 20, тогда второй будет 70. Знаем, что «второй усик» не может быть больше первого.

Вижу, что не 60, потому что 30 разделить на два — это не табличный случай.

Следовательно, 2 ∙ 40 = 80. Значит «первый усик» предположительно 80. «Второй усик» тогда найдем вычитанием: 90 – 80 = 10. Десять разделить на два, это таблица.

Как думаете, вы справитесь с делением? Когда встречаете случаи, где двузначное число делится на однозначное, и примеры не относятся к таблице умножения, то решайте подбором «усиков». Разбивайте делимое на подходящие слагаемые. Их можно записать суммой в скобочках, а при делении использовать правило деления суммы на число.

Решите задачу.

Таня выполнила 96 примеров, а Коля в 4 раза меньше. Сколько примеров решил Коля?

Чтобы ответить на вопрос задачи, надо выполнить действие деления.

96 : 4 =

«Усиками» будут 80 и 16, получается сумма 80 + 16. Значит, каждое из этих слагаемых разделите на 4, а частные сложите.

Ответ: 24

Деление столбиком двузначное на однозначное

Письменное деление уголком просто невозможно усвоить без блестящего знания таблицы умножения. Это просто трата времени и нервов. В древности в римских школах ее заучивали хором на распев. Знаете ответы на «отлично», тогда переходите на примеры деления в столбик.

Задание 1.

Пусть надо 84 разделить на три. Посмотрите на запись. Такой значок означает деление уголком. Уголок имеет наверху делитель, на который делим. Под чертой — результат, который ищем. Он называется частным.

Нам надо узнать, чему равно частное. Но прежде определим, сколько цифр будет в результате. Это очень важный шаг, поэтому упускать его нельзя. Как мы будем это делать? Посмотрите на первую цифру. Это восьмерка. Восемь больше трех. Значит, она может дать нам полноценную цифру в частном. Ставим точку. После восьмерки еще одна цифра, это значит, что частное — двузначное число. Под чертой в уголке карандашом поставьте вторую точку.

Первое неполное делимое — восьмерка. Начинаем ее делить на три, ищем табличный случай. Легче всего уменьшать 8 на единицу.

8 – 1 = 7. В таблице нет деления семи на три.

Уменьшаем еще на 1.

7 – 1 = 6. Шесть делится на три, получается — по два. Записываем 2 в частное под чертой.

Теперь мы должны понять, сколько не разделили. Ведь разделили всего шесть.

А надо было разделить восемь.

Два осталось неразделенным. Это остаток. Он должен быть меньше делителя.

Давайте проверим: два меньше трех.

Да, действительно. Мы сделали все правильно. Этот шаг очень важен. Не забывайте сравнивать остаток с делителем.

После этого сносим следующую цифру с тем, чтобы получить новое неполное делимое

Обратите внимание: нужно писать каждую цифру в своей клетке. Получается неполное делимое 24

Ответ: 28.

Задание 2.

Решите пример столбиком 96 : 4 =

Проверьте:

Ура! Наш математический маршрут пройден. Знания-сокровища из цветных лент превратились в волшебную радугу. Что же у нас вышло, что мы унесем в нашем сундуке. Закончите предложения:

Основные понятия

Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.

Название числа напрямую зависит от количества знаков.

  • Однозначное — состоит из одного знака
  • Двузначное — из двух
  • Трехзначное — из трех и так далее.

Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.

Разряд единиц — то, чем заканчивается любое число. Разряд десятков — то, что находится перед разрядом единиц. Разряд сотен стоит перед разрядом десятков. На место отсутствующего разряда всегда можно поставить ноль.

В числе 429 содержится 0 тысяч, 4 сотни, 2 десятка и 9 единиц.

Умножение — арифметическое действие в котором участвуют два аргумента. Один множимый, второй множитель. Результат их умножения называется произведением.

Свойства умножения

1. От перестановки множителей местами произведение не меняется.

a * b = b * a

2. Результат произведения трёх и более множителей не изменится, если любую группу заменить произведением.

a * b * c = (a * b) * c = a * (b * c)

Самое главное в процессе вычисления — это знание таблицы умножения. Это сделает подсчет упорядоченным и быстрым.

Важно помнить правило: умножение в столбик с нулями дает в результате ноль

а * 0 = 0, где а — любое натуральное число.

Алгоритм умножения в столбик

Чтобы понять, как умножать в столбик — рассмотрим действия по шагам:

1. Запишем пример в строку. Выберем и подчеркнем из двух чисел наименьшее, чтобы не забыть при новой записи поставить его вниз.

2. Записываем произведение в виде столбика. Сначала наибольший множитель, затем наименьший, тот что мы подчеркнули ранее. Слева ставим соответствующий знак и проводим черту под которой будем записывать ход решения

Важно обратить внимание разряды, чтобы единицы стояли стоять под единицами, десятки под десятками и т. д

3. Поэтапно производим необходимые действия. Каждую цифру первого множителя нужно умножить на крайнюю цифру второго. Это действие происходит справа налево: единицы, десятки, сотни.

Если результат получится двузначным, под чертой записывается только последняя его цифра. Остальное переносим в следующий разряд путем сложения со значением, полученным при следующем умножении.

4. После умножения на единицу второго множителя с остальными цифрами необходимо провести аналогичные манипуляции. Результаты записывать под чертой, сдвигаясь влево на одну позицию.

5. Складываем то, что нашли и получаем ответ.

Умножение на однозначное число

Для решения задачи по произведению двух натуральных чисел, одно из которых однозначное, а другое — многозначное, нужно использовать способ столбика. Для вычисления воспользуемся последовательностью шагов, которую рассмотрели выше. 

Возьмем пример 234 * 2:

1. Запишем первый множитель, а под ним второй. Соответствующие разряды расположены друг под другом. Двойка находится под четверкой.

2. Последовательно умножаем каждое число в первом множителе на второй, начиная с единиц и продвигаясь к десяткам и сотням.

3. Ответ запишем под чертой:

Производить действия необходимо в следующей последовательности:

Умножение двух многозначных чисел

Если оба множителя — многозначные натуральные числа, нужно действовать следующим образом.

Рассмотрим пример 207 * 8063:

  1. Сначала запишем наибольшее 8063, затем наименьшее 207. Нужно разместить цифры друг под другом справа налево:
  1. Последовательно перемножаем значения разрядов. Результатом является неполное произведение.
  1. Далее перемножаем десятки. Первый множитель умножим на значение разряда десятков второго и т.д. Результат запишем под чертой.
  1. По аналогии действуем с сотыми. Ноль пропускаем в соответствии с правилом. Так получилось второе неполное произведение:
  1. Далее складываем два произведения в столбик. 
  1. Получившееся семизначное число — результат умножения исходных натуральных чисел.

Ответ: 8 063 * 207 = 1669041. 

Примеры на умножение в столбик

Самостоятельное решение задачек помогает быстрее запомнить правила и натренировать скорость

Неважно, в каком классе учится ребенок — в 1, 3 или 4 — эти примеры подойдут всем

Повтори тему — деление в столбик, она очень полезная!

Описание

Программа «Задание на неделю 3 класс» формирует задачи и примеры, которые помогают закрепить ребенку все знания, полученные во третьем классе в течение года, а также подготовится к проверочной и контрольной работе.

На листе формата А4 формируется 13 заданий по математике. При этом задания даются в небольшом объеме, но с максимальным охватом всех типов примеров. Это позволяет детям быстро вспомнить материал 3 класса.

В каждую карточку входят следующие виды заданий:

  • задание на повторение понятий «слагаемое», «сумма», «уменьшаемое», «вычитаемое», «разность», «множитель», «произведение», «делимое», «делитель» и «частное» с вычислениями;
  • примеры на сложение, вычитание, умножение и деление, в том числе: логические (вставить знаки для получения верного равенства),
  • выражения на порядок действий (от пяти действий со скобками);
  • примеры на умножение и деление разных типов: умножение и деление круглых чисел, внетабличное умножение и деление;
  • примеры на деление с остатком с вычисление частного, уменьшаемого или вычитаемого;
  • решение уравнений;
  • задание на сравнение дробей (долей) и нахождение части от числа;
  • задания на повторение единиц измерения длины, массы и времени;
  • примеры в столбик: сложение трехзначных чисел, вычитание трехзначных чисел, умножение двухзначного числа на однозначное, умножение трехзначного числа на однозначное и двузначное, на однозначное число;
  • примеры на нахождение сторон, периметра и площади квадрата и прямоугольника;
  • простые задачи на движение: нахождение скорости, времени или расстояния.

Программа «Задание на неделю 3 класс» написана в Excel с помощью макросов. Данные генерируются случайным образом, что позволяет получить более тысячи вариантов заданий для 3 класса, карточки заданий не повторяются.

Для ознакомления с программой можно скачать изображение карточки, которая получилась с помощью программы. Для получения новой карточки математического диктанта достаточно скачать, нажать на кнопку и распечатать.

Другие программы, которые помогут закрепить навыки счета:

  • Цепочки примеров в пределах 1000 (все действия)
  • Числовые пирамиды большие (в пределах 50,100 и больше)
  • Умножение и деление по типам (табличное, внетабличное, круглых чисел)
  • Сложение и вычитание в столбик
  • Умножение и деление в столбик
  • Деление с остатком на число (с выбором уровня сложности)
  • Порядок действий в пределах 1000 (все действия)
  • Сложные примеры на порядок действий
  • Выражения с именованными числами

Основы умножения столбиком

Для ведения вычисления в столбик нам будет нужна таблица умножения

Важно помнить ее наизусть, чтобы считать быстро и эффективно

Также потребуется вспомнить, какой результат мы получим при умножении натурального числа на нуль. Это часто встречается в примерах. Нам потребуется свойство умножения, которое в буквенном виде записывается как a·= (a – любое натуральное число).

Чтобы лучше понять, как умножать столбиком, рекомендуем вам повторить аналогичный метод сложения. Один из этапов подсчетов будет представлять собой именно сложение промежуточных результатов, и знание этого метода при складывании чисел нам пригодится.

Также важно, чтобы вы умели сравнивать натуральные числа и помнили, что такое разряд

Как читать десятичную дробь

Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:

Сколько цифр после запятой? Читается, как
одна цифра — десятых; 1,3 — одна целая, три десятых;
две цифры — сотых 2,22 — две целых, двадцать две сотых;
три цифры — тысячных; 23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных;
четыре цифры — десятитысячных; 0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных;
и т.д.

Сохраняй наглядную картинку, чтобы быстрее запомнить.

Как объяснить ребенку деление и научить делить столбиком?

дети-школьники тренируются делить числа столбиком

Во-первых, учтите ряд вводных факторов:

  • ребёнок знает таблицу умножения
  • хорошо разбирается и умеет применять на практике действия вычитания и сложения
  • понимает разницу между целым и его составными элементами

Дальше акценты в ваших действиях выглядят так:

  • поиграйте с таблицей умножения. Положите её перед ребёнком и на примерах покажите удобство использования при делении,
  • объясните расположение делимого, делителя, частного, остатка. Предложите ребёнку повторить эти категории,
  • превратите процесс в игру, придумайте историю про цифры и действие деления,
  • подготовьте наглядные предметы для обучения. Подойдут счётные палочки, яблоки, монеты, игрушки, очищенные сведение или апельсин. Предлагайте их распределить между разным количеством людей, например, между мамой, папой и ребенком,
  • первым показывайте ребёнку действия с чётными числами, чтобы он видел результат деления, кратный двум.

Сам процесс освоения деления столбиком:

  • запишите цифры, разделив их границами. Повторите с ребёнком расположение категорий деления,
  • предложите ему проанализировать цифры делимого на предмет «больше-меньше» делителя. Помогайте вопросом — сколько раз одно число помещается во втором. В результате ребёнку следует выделить то число/числа, которые он будет применять для совершения первого действия,
  • подскажите алгоритм определения разрядности частного. Её удобно изобразить точками, которые потом превратятся в цифры,
  • помогите правильно определить и записать первое число в частное, совершите его умножение на делитель, запишите результат под делимым, выполните вычитание. Объясните, что результат вычитания всегда должен быть меньше делителя. В противном случае действие совершилось с ошибкой и его следует переделать,
  • следующий шаг — анализ ситуации с добавлением второго числа от делимого и определения количества раз повторения делителя в нём,
  • снова помогите с записью действия,
  • продолжайте до момента, когда результат от разницы составит ноль. Это актуально только для деления чисел без остатка,
  • закрепите знания у ребёнка еще несколькими примерами. Следите, чтобы он не устал, иначе дайте перерыв.

Сначала стоит доходчиво объяснить, что такое деление на простом примере. Суть математического действия — разложить число поровну. В 3-м классе дети хорошо учатся на доступных примерах: раздают кусочки торта гостям, рассаживают кукол по 2 машинам.

Когда малыш усвоит суть деления, покажите его запись на листке. Используйте уже знакомые задания с простыми числами:

  • Сначала запишите задачу обычным способом: 250:2=?
  • Каждому числу дайте название: 250 — делимое, 2 — делитель, результат после знака равно — частное.
  • Затем сделайте сокращенную запись столбиком (уголком):
  • Рассуждайте вместе так: сначала найдем неполное частное. Это будет 2, так как оно не меньше делителя, а вернее, равно ему. В этом числе помещается один делитель, значит, в частное записываем цифру 1 и умножаем ее на 2. Заносим полученный результат под делимым. Отнимаем 2-2. Получится ноль, поэтому сносим следующее число и опять подыскиваем частное. Совершаем математическое действие до тех пор, пока не получится ноль.
  • После получения окончательного результат сделайте проверку с помощью умножения: 125х2=250.

Желательно научить третьеклассника рассуждать в процессе вычисления вслух, выполнять действия на черновике. Сначала проговаривайте алгоритм вместе, потом только слушайте ученика и помогайте исправить ошибки.

Итак, как объяснить ребенку деление столбиком:

  • Постарайтесь сначала объяснить на маленьких цифрах. Возьмите счетные палочки, например, 8 штук
  • Спросите у ребенка, сколько пар в этом ряду палочек? Правильно — 4. Значит, если разделить 8 на 2, получится 4, а при делении 8 на 4 получится 2
  • Пусть ребенок сам разделит другое число, например, более сложное: 24:4
  • Когда малыш освоил деление простых чисел, тогда можно переходить к делению трехзначных чисел на однозначные
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector