Как научить ребенка делить столбиком: советы родителям
Содержание:
- Деление с остатком положительного числа на целое отрицательное
- Как правильно делить числа в столбик: алгоритм деления
- Делим и умножаем, при помощи таблицы умножения
- Как делить в столбик трехзначное число на однозначное, двузначное и трехзначное: примеры, объяснение
- Как научиться делить в столбик с остатком
- Скачать карточки
- Делим десятичные дроби на 1000, 100, 10: как это сделать правильно?
- Обучение делению в столбик в тетради
- Деление столбиком на однозначное число
- Как изменить почерк пошагово
- Как делить в столбик четырехзначные, многозначные большие числа, многочлены на многочлены: примеры, объяснение
- Деление с остатком целых положительных чисел
- Признаки делимости
- Пример выполнения деления в столбик
- Как объяснить ребенку, что такое умножение и деление
- Как разделить одну десятичную дробь на другую: столбиком, умножением
- Операция деления: основные обозначения
- Как обучить малыша делению в столбик
- Как правильно подготовить ребенка к восприятию нового материала?
Деление с остатком положительного числа на целое отрицательное
Чтобы легко выполнить деление с остатком положительного числа на целое отрицательное, обратимся к правилу:
В результате деления целого положительного a на целое отрицательное b получаем число, которое противоположно результату от деления модулей чисел a на b. Тогда остаток равен остатку при делении |a| на |b|. |
Неполное частное — это результат деления с остатком. Обычно в ответе записывают целое число и рядом остаток в скобках.
Это правило можно описать проще: делим два числа со знаком «плюс», а после подставляем «минус».
Все это значит, что «хвостик», который у нас остается, когда делим положительное число на отрицательное — всегда положительное число.
Алгоритм деления положительного числа на целое отрицательное (с остатком):
- найти модули делимого и делителя;
- разделить модуль делимого на модуль делителя
- получить неполное частное и остаток;
- записать число противоположное полученному.
Пример
Разделить 17 на −5 с остатком.
Как решаем:
Применим алгоритм деления с остатком целого положительного числа на целое отрицательное.
Разделим 17 на − 5 по модулю. Отсюда получим, что неполное частное равно 3, а остаток равен 2. Получим, что искомое число от деления 17 на − 5 = − 3 с остатком 2.
Ответ: 17 : (− 5) = −3 (остаток 2).
Как правильно делить числа в столбик: алгоритм деления
Для деления чисел столбиком следуйте по таким шагам:
- правильно запишите действие деления на бумаге. Выбирайте верхний правый угол тетради/листа. Если вы только учитесь выполнять действие деления в столбик, берите бумагу в клетку. Так вы сохраните визуальную последовательность решения,
- разлинейте место между делимым и делителем.
Вам поможет схема ниже.
- планируйте пространство для деления в столбик. Чем длиннее число, которое подлежит делению, и чем корове делитель, тем ниже на станице спуститься решение,
- первое действие деления совершайте с тем количеством цифр делимого, которое равно делителю. Например, если справа от разделительной линии у вас стоит однозначная цифра, то рассматривайте первую у делимого, если двухзначная — то 2 первых,
- перемножьте числа под и над чертой и запишите результат под цифрами делимого, которые вы обозначили для первого действия,
- завершайте действие вычитанием и определением остатка. Нарисуйте горизонтальную линию над ним, чтобы отделить первый шаг решения,
- допишите следующую цифру делимого к остатку и продолжайте решение,
- последний шаг деления — когда вы получите от вычитания 0 либо число, меньше делителя. Во втором случае ваш ответ будет с остатком, например, 17 и 3 в остатке.
Делим и умножаем, при помощи таблицы умножения
Здесь стоит объяснить ребенку, про обратное умножению действие, называется «делением». Опираясь на таблицу умножения, покажите обучаемому эту взаимосвязь между делением и умножением на какой-нибудь примере.
Например: 2 умножить на 4 будет восемь
Здесь акцентируйте внимание на то, что итогом умножения будет произведение двух чисел. Затем будет лучше проиллюстрировать операцию деления, указывая на действие обратной операции умножения
Поделите получившийся ответ «8» на любой множитель – «4» или «2», в результате всегда будет тот множитель, который не использовался в операции.
Также стоит научить распознавать категории, описывающие операции деления, такие как, «делитель», «делимое», «частное»
Важно закрепить данные знания, они наиболее необходимы для дальнейшего процесса обучения!
Как делить в столбик трехзначное число на однозначное, двузначное и трехзначное: примеры, объяснение
Продолжим разбор действия деления столбиком на примерах с трёхзначным делимым.
Когда делитель одноразрядное число, алгоритм действия аналогичен рассмотренным выше.
Схематически он выглядит так:
В случае деления трёхзначного делимого на двузначный делитель подберите с ребёнком число, соответствующее количеству вмещений второго в первой части первого либо в целом. То есть рассматривайте сначала 2 цифры трехзначного делимого, если они меньше делителя, тогда все три.
Когда ребёнок еще только начал освоение деления столбиком, подскажите ему совершение действий с однозначными числами. То есть с первыми в делимом и делителе. Пусть малыш совершит ошибку, которая приведет к отрицательному значению вычитания и вернётся к подбору числа под чертой, чем запутается с действием сразу для двузначного делителя.
Схема деления трехзначного на двузначное числа такая:
Трехзначные значения в делителе и делимом выглядят громоздкими и пугающими для ребёнка. Успокойте его, объяснив, что принцип действий идентичен, как и при делении простых чисел.
Метод перебора по одной цифре поможет малышу разобраться с каждым числом отдельно. Только количество времени на это действие ему потребуется больше, чем в предыдущих примерах. Для лучшего визуального восприятия объединяйте дугами количество цифр, которые будут участвовать в первом действии.
Схема деления трёхзначного на трёхзначное числа.
Как научиться делить в столбик с остатком
Деление с остатком – следующий этап обучения. Во время таких действий делимое невозможно ровно разделить на части. Ответ примера будет иметь неделимый кусок, меньший делителя. Чтобы школьник быстрее понял смысл математических действий, тему объясняют на доступных примерах.
На подносе находится 34 конфеты, которые нужно разделить на 8 детей. Когда каждый ребенок получит по 4 конфеты, на столе останется еще 2 штуки. Это и будет остаток. Вычисления выглядят следующим образом:
34 : 8= 4 ост (2). Откуда взялась цифра «2»? 8 х 4= 32, 34 — 32= 2.
Принцип деления уголком с остатком аналогичен классическому, с одной разницей – наличием остатка.
Для примера разделим 235 на 14.
235 — делимое, расположим слева, делитель (14) напишем правее. Оба значения между собой разделим уголком. Приступим к поиску целого. 23>14, в данном числе помещается 1 делитель. Единицу запишем внизу под уголком. 23 — 14 = 9.
Во время решения примеров с остатком, ответ может быть записан двумя способами:
- в виде дроби, когда в числителе размещают остаток, а в знаменатель записывают делитель:11/16,
- но чаще всего ответ записывают словами: 6 целых и 11 в остатке.
Скачать карточки
В качестве домашнего математического тренажера используйте карточки с примерами. В них включайте разные случаи: с однозначными и многозначными числами, с нулями, деление с полным результатом и остатком. Скачать карточки можно бесплатно. Раздаточный материал обязательно следует напечатать для проверочной работы.
Ошибки с делением у детей в начальной школе встречаются довольно часто. Уделите этой теме максимум внимания и времени, чтобы усвоение последующего материала проходило без запинок. Используйте карточки, видеоуроки, постоянную тренировку навыка и повторение пройденных тем и правил в игровой форме. Тогда домашние уроки не навеют на ребенку скуку и пройдут с максимальной пользой.
Понравился наш контент? Подпишитесь на канал в .
Делим десятичные дроби на 1000, 100, 10: как это сделать правильно?
Исходя из имеющихся и известных правил деления так называемых «обыкновенных дробей», деление на числа с нулями равносильно умножению. Необходимо перенести запятую на нужное количество цифр. Если значений не хватает, нули просто добавляются. Это же происходит с бесконечными десятичными дробями.
Поэтому, чтобы верно произвести действие деления десятичной дроби на числа с нулями, нужно перенести запятую на столько цифр, сколько нулей стоит после единицы в делителе: если это число 10 – то нуль один, если 100 – то два. И так далее.
Делим десятичные дроби на 1000, 100, 10
Примеры с бесконечными дробями решаются также:
Делим десятичные дроби на 1000, 100, 10
Обучение делению в столбик в тетради
Начинать обучение нужно тогда, когда ученик понял материал о делении на практике, с помощью игры и таблицы умножения.
Пример деления
Нужно начинать делить таким образом, применяя простые примеры. Так, деление 105 на 5.
Объяснять математическое действие нужно подробно:
- Напишите в тетради пример: 105 разделить на 5.
- Запишите это, как при делении в столбик.
- Расскажите, что 105 – делимое, а 5 – делитель.
- С учеником определите 1 цифру, которая допускает деление. Значение делимого – 1, эта цифра не делится на 5. А вот второе число – 0. В итоге получится 10, это значение допускается разделить данный пример. Число 5 два раза входит в число 10.
- В столбике деления, под числом 5, напишите цифру 2.
- Попросите ребенка число 5 умножить на 2. По итогу умножения получится 10. Это значение нужно записать под числом 10. Далее нужно написать в столбике знак вычитания. От 10 нужно отнять 10. Получится 0.
- Запишите в столбике число, получившееся в результате вычитания – 0. У 105 осталось число, которое не участвовало в делении – 5. Это число нужно записать.
- В итоге получится 5. Это значение нужно разделить на 5. Результат – цифра 1. Это число нужно записать под 5. Результат деления – 21.
Родителям нужно объяснить, что это деление не имеет остатка.
Начать деление можно с цифр 6,8,9, затем переходить к 22, 44, 66, а после к 232, 342, 345, и так далее.
Еще один пример деления
Деление столбиком на однозначное число
Практические навыки удобнее всего отрабатывать на простых примерах. Поэтому, разделим числа 8 и 2 в столбик. Конечно, данную операцию легко произвести в уме или по таблице умножения, однако провести подробный разбор будет полезно для наглядности, хоть мы и так знаем, что 8 ÷ 2 = 4 .
Итак, сначала запишем делимое и делитель согласно методу деления в столбик.
Следующим шагом нужно выяснить, сколько делителей содержит делимое. Как это сделать? Последовательно умножаем делитель на 0 , 1 , 2 , 3 . . Делаем это до тех пор, пока в результате не получится число, равное или большее, чем делимое. Если в результате сразу получается число, равное делимому, то под делителем записываем то число, на которое умножали делитель.
Иначе, когда получается число, большее чем делимое, под делителем записываем число, вычисленное на предпоследнем шаге.На место неполного частного записываем то число, на которое умножался делитель на предпоследнем шаге.
Вернемся к примеру.
2 · 0 = 0 ; 2 · 1 = 2 ; 2 · 2 = 4 ; 2 · 3 = 6 ; 2 · 4 = 8
Итак, мы сразу получили число, равное делимому. Записываем его под делимым, а число 4 , на которое мы умножали делитель, записываем на место частного.
Теперь осталось вычесть числа под делителем (также по методу столбика). В нашем случае 8 — 8 = 0 .
Данный пример — деление чисел без остатка. Число, получащееся после вычитания — это остаток деления. Если оно равно нулю, значит числа разделились без остатка.
Теперь рассмотрим пример, когда числа делятся с остатком. Разделим натуральное число 7 на натуральное число 3 .
В данном случае, последовательно умножая тройку на 0 , 1 , 2 , 3 . . получаем в результате:
3 · 0 = 0 7 ; 3 · 1 = 3 7 ; 3 · 2 = 6 7 ; 3 · 3 = 9 > 7
Под делимым записываем число , полученное на предпоследнем шаге. По делителем записываем число 2 — неполное частное, полученное на предпоследнем шаге. Именно на двойку мы умножали делитель, когда получили 6 .
В завершение операции вычитаем 6 из 7 и получаем:
Данный пример — деление чисел с остатком. Неполное частное равно 2 , а остаток равен 1 .
Теперь, после рассмотрения элементарых примеров, перейдем к делению многозначных натуральных чисел на однозначные.
Алгоритм деления столбиком будем рассматривать на примере деления многозначного числа 140288 на число 4 . Сразу скажем, что понять суть метода гораздо легче на практических примерах, и данный пример выбран не случайно, так как иллюстрирует все возможные нюансы деления натуральных чисел столбиком.
Как изменить почерк пошагово
Шаг 1. Проанализировать свой почерк
Прежде чем учиться красиво писать буквы ручкой или пером, нужно увидеть свою отправную точку. Напишите несколько предложений в привычном стиле с обычной скоростью. Можно взять для этого тетрадный лист в линию, но лучше писать на чистой нелинованной бумаге — она поможет увидеть, где строчки начинают уползать вниз или вверх.
Обратите внимание на следующие факторы:
- встречается ли у вас печатное написание букв;
- одинакова ли высота букв, какие из них выбиваются;
- какова форма букв — округлая, угловатая, вытянутая;
- есть ли наклон — в норме он должен быть вправо;
- насколько сильно вы нажимаете на ручку, остаются ли вмятины на листе или слабо прорисованные участки.
Отдельно проанализируйте написание букв «и», «ш», «м», «л», «п» — часто они сливаются в сплошную неразборчивую «кардиограмму».
Шаг 2. Выбрать красивый прописной шрифт
Если вы увидели и проанализировали свои ошибки, посмотрите, как написать то же самое красивым почерком. Выберите в прописях или в других источниках шрифт, который вы хотели бы освоить. Очень много рукописных шрифтов предлагает приложение Canva, также можно найти интересные варианты на сайте ofont.ru.
Распечатайте пример нужного шрифта, чтобы он всегда был у вас перед глазами. Также нужно заготовить карточки для тренировок — отдельные буквы и целые фразы, написанные данным шрифтом, которые вы будете обводить ручкой. Среди них должны быть образцы написания:
- заглавных букв;
- различных сочетаний гласных и согласных;
- букв с верхними и нижними элементами («д», «у», «в» и т. д.).
Самое простое решение — взять шрифт из прописи, чтобы воспользоваться уже готовыми материалами. Например, образцы верного написания и множество учебных прописей представлены в пособии «Правильные соединения букв для хорошего почерка» Георгиевой М.О. Если вам понравился необычный каллиграфический шрифт, материалы для занятий придется готовить самостоятельно.
Шаг 3. Много и регулярно писать в тетради
Каллиграфия — занятие для терпеливых. Чтобы научиться правильно и красиво писать буквы, придется многократно повторять каждую из них. Вначале можно обводить по контуру образцы, а после практиковаться в самостоятельном написании.
Заведите пару специальных тетрадей для занятий — одну в мелкую косую линию и вторую с обычными линованными листами. Начинать тренировки лучше с тетради в косую линию, чтобы удерживать правильный наклон.
Уделите внимание соединениям букв. По правилам в некоторых сочетаниях используют только нижнее соединение, в других — только верхнее
Например:
- всегда нижнее соединение бывает в словосочетаниях «ве», «вы», «вь», «фа», «фи», «юр», «юс», «ол», «ом», «оя»;
- всегда верхнее соединение в словосочетаниях «он», «ог», «од», «оз», «во», «ву», «ви», «вз» и т. д.
Шаг 4. Довести новые навыки до автоматизма
Научиться красивому почерку можно только путем регулярных тренировок, которые будут закреплять мышечный навык. В идеале нужно заниматься ежедневно, но если не получается — пусть занятия будут не менее трех раз в неделю. Не допускайте длинных промежутков между тренировками — это неизбежно вызовет откат назад.
Необязательно на каждой тренировке изучать новые буквы или соединения. Двигайтесь постепенно: переходите к следующей букве только после того, как уверенно освоили предыдущую. Кроме того, время от времени возвращайтесь к пройденному материалу. Такой подход поможет довести новый навык до автоматизма без сильных откатов к старым привычкам.
Если вы или ребенок уже не задумываетесь о написании буквы и можете сосредоточиться на орфографии — значит, новый навык успешно встроился. Однако если начать писать быстрее, качество может страдать — стоит это учитывать и проявить терпение к подобным ситуациям.
Как делить в столбик четырехзначные, многозначные большие числа, многочлены на многочлены: примеры, объяснение
В случае деления четырёхзначного числа на любое, которое содержит до 4 порядков одновременно, обратите внимание ребёнка на нюансы:
- определение правильного количества порядков после действия деления. Например, в примере 6734:56 должно получится двузначное целое число в графе «частное», а в примере 8956:1243 — однозначное целое,
- появление нулей в частном. Когда в ходе решения при переносе следующего числа делимого результат оказывается меньше делителя,
- проверку полученного результата посредством выполнения действия умножения. Этот нюанс актуален для деления больших чисел без остатка. Если последний присутствует, то советуйте ребёнку проверить себя и ещё раз разделить числа в столбик.
Ниже пример решения.
Для больших многозначных чисел, которые делятся на конкретные значения меньше или равные им по количеству знаков, актуальны все алгоритмы, рассмотренные выше.
Ребёнку следует быть особенно внимательным в таких случаях и правильно определять:
- количество знаков у частного, то есть результата
- цифры у делимого для первого действия
- правильность переноса остальных чисел
Примеры подробного решения ниже.
При совершении действия деления над многочленами обращайте внимание детей на ряд особенностей:
- у действия может быть остаток либо отсутствовать. В первом случае запишите его в числителе, а делитель в знаменателе,
- для совершения действия вычитания дописывайте в многочлен недостающие степени функции, умноженные на ноль,
- совершайте преобразование многочленов путём выделения повторяющихся дву-/многочленов. Тогда их сократите и получится результат без остатка.
Ниже ряд подробных примеров с решениями.
Деление с остатком целых положительных чисел
Деление — это разбиение целого на равные части.
Остаток от деления — это число, которое образуется при делении с остатком. То есть то, что «влезло» и осталось, как хвостик.
Чтобы научиться делить числа с остатком, нужно усвоить некоторые правила. Начнем!
Все целые положительные числа являются натуральными. Поэтому деление целых чисел выполняется по всем правилам деления с остатком натуральных чисел.
Самый удобный способ деления — это столбик.
Попрактикуемся в решении.
Пример
Разделить 14671 на 54.
Как решаем:
Выполним деление столбиком:
Неполное частное равно 271, остаток — 37.
Ответ: 14671 : 54 = 271(остаток 37).
Признаки делимости
Для разбора алгоритма деления 2 значений, которые являются внетабличными (отсутствуют в таблице умножения), необходимо обозначить элементы операции. Пусть дано некоторое выражение v: t = p. Коэффициенты в нем расшифровываются следующим образом:
- V — делимое, т. е. число, которое требуется разделить.
- T — математики называют его делителем.
- P — частное является числовым результатом, который будет получаться при делении двух величин.
Иногда в литературе с физико-математическим уклоном можно встретить такую запись: v / t = p. Кроме того, числа классифицируются на простые и составные. К первой группе относятся все значения, которые делятся без остатка только на 1 или на значение равное исходному, т. е. 23 делится на 1 и на 23, а остальных делителей у него нет вообще. Вторая группа — значения, состоящие из нескольких множителей. Например, 100 = 25 * 4 = 5 * 5 * 2 * 2.
Десятичная система состоит из однозначных цифр, формирующих двузначные, трехзначные, четырехзначные, пятизначные числа (количество разрядов можно продолжать до бесконечности). Для деления двухзначного значения на однозначное без остатка необходимо знать следующие свойства (признаки деления):
- 0: операция невозможна, поскольку превращает все выражение в пустое множество.
- 1: делятся все значения.
- 2: последняя цифра является четным значением, т. е. 0, 2, 4, 6 и 8.
- 3: сумму цифр, составляющих число, можно разделить на 3. Например, проверить возможность деления 72 на 3. Для этого следует применить такое правило: 7 + 2 = 9. По таблице умножения 9 делится на 3 без остатка. Следовательно, 72 делится на 3.
- 4: сумма двух цифр делится на 4. Если представлено 5-значное число, то нужно рассматривать 2 последних цифры.
- 5: последней цифрой является 0 или 5.
- 6: деление на составные части, т. е. на 2 и 3.
- 7: возможность выполнения операции определяется по формуле / 7, где а, b и с — соответствуют первой, второй и третьей цифрам. Для двузначной величины — a / 7 и b / 7.
- 8: должно делиться на 2 и 4. Если количество цифр больше 2, то следует рассматривать делимость без остатка трех последних цифр.
- 9: деление по таблице умножения. Если число состоит из трех и более цифр, то следует рассматривать деления их суммы на 9.
Пример выполнения деления в столбик
Деление с использованием конкретного примера самая эффективная и распространённая методика в обучении детей делению в столбик. Ученику предлагается разделить трехзначное число, допустим «945» на однозначное число «5» в столбик. В качестве примера лучше брать трехзначное и выше по значению число, чтобы сразу ликвидировать у ребенка страх перед большим числом, которое предстоит делить в столбик.
1 Этап. Школьник должен безошибочно назвать компоненты выражения, которое ему предстоит выполнить. Если все пояснения им усвоены, то ему не составит труда определить «945» как делимое, «5» как делитель, а результат, который будет извлечен после процедуры деления как частное. Чем собственно говоря он сейчас и должен заняться.
2 Этап. Ученика попросить сначала записать в ряд 945 и 5, а затем поделить их с помощью «уголка».
3 Этап. Ребенку предлагается рассмотреть делимое двигаясь слева направо по этому числу и определяя наименьшее число, которое будет больше делителя. Школьник выбирает между числами:9, 94 и 945, соответственно, наименьшим будет число 9. Затем ему надо ответить на вопрос, какое количество раз число 5 поместиться в числе 9? Правильным ответом ученика будет, — один. Соответственно 1 записывается под чертой, и оно станет первой цифрой искомого частного.
4 Этап. Начинается формирование столбика деления. Ребенок должен будет умножить получение число 1 на 5, получив соответственно 5. Результат этой операции записывается под первой цифрой делимого, из числа 9 вычитается 5. Ребенок должен назвать результат и записать его – это число 4.
На этом этапе принципиально важным станет пояснения, что результат вычитания всегда должен получаться меньше делителя, если это не так, значит допущена ошибка при определении какое количество раз число 5 может «поместиться» в числе 9. Естественным будет то, что результат, который будет меньше делителя, должен быть увеличен за счет следующей цифры в ряду делимого. Далее ученик записывает 4 к уже вычисленной четверке.
5 Этап. Дальнейшее объяснение действий лежит в уже знакомой ребенку плоскости математической логики и требует ответа на вопрос о том, — сколько раз число 8 помещается в числе 44? Вспомнив навыки таблицы умножения «наизнанку», ребенок должен дать ответ — это 8. Взрослый поясняет школьнику, что это теперь будет следующая цифра в записи результата частного, которое он продолжает вычислять. Далее следует умножение им 5 на 8 и полученный результат, 40, следует записать под цифрой 44 в столбике.
6 Этап. Здесь операция повторяется и действия обучаемого идут по «накатанному пути». Ребенок вычтет 40 из числа 44, получив 4
Ещё раз взрослому стоит заострить его внимание на том, что 4 меньше делителя 5 и значит действия ребенок выполняет правильно. Предстоит использовать последнюю цифру, оставшуюся у делимого – 5
Дописав ее вниз по столбику к четверке ребенок получит число 45.
Взрослый повторяет вопрос в отношении этого результата. Сколько пятерок в числе 45? Ответом станет число 9, которое и надо записать под чертой.
7 Этап. Завершающий, на нем надо попросить ученика умножить 5 на 9. Школьник должен получить результат 45, озвучив его он делает запись в столбике под цифрой 45. Проделав операцию вычитания 45 из 45 ученик получит 0. При получении этого результата взрослый поясняет школьнику, что им был только что рассмотрен пример деления числа без остатка столбиком.
Как уже всем стало наверно понятно, — ключом к быстрому и эффективному умению делить столбиков для ребенка является его умение пользоваться таблицей умножения. Дальнейшие навыки закрепляются систематическим выполнением примеров и упражнений ребенком сначала под контролем взрослого, а затем уже самостоятельно.
Как объяснить ребенку, что такое умножение и деление
Причина непонимания умножения и деления в большинстве случаев кроется в банальном отсутствии внимательности у школьника
В раннем возрасте деткам сложно концентрировать внимание на чем-то конкретном более 15 минут, поэтому они поддаются влиянию различных отвлекающих факторов
Обратите внимание! Ребенок может стесняться задавать учителю один и тот же вопрос несколько раз, потому что боится показаться глупым в глазах окружающих. В такой ситуации нужно провести со школьником беседу, уточнить детали, которые ему непонятны после объяснения материала, и успокоить
Для того чтобы объяснить ребенку понятие «умножение», для начала нужно подготовить распечатку таблицы умножения Пифагора (нарисовать ее собственноручно или распечатать на принтере). Без такой таблицы не получится разъяснить сам принцип только с помощью обычных примеров. На начальном этапе пусть ребенок сам постарается определить закономерность (желательно, чтобы это занятие стало увлекательной игрой).
Изучая данный раздел математики, детишкам должны быть известны такие простые действия, как сложение и вычитание. Разъясняя своему чаду принцип работы умножения, рекомендуется использовать самый элементарный прием. Нужно разобраться, что фраза «умножить число шесть на число два» или же «шестью два» означает то же самое, что и «шесть плюс шесть». Также следует записать пример в виде цифр для визуализации: 6*2 = 6+6.
Таблица умножения Пифагора
Объяснение принципа деления
Для того чтобы разъяснить ребенку, как нужно правильно делить, совсем необязательно использовать скучные учебники. Вместо них можно взять яблоки, конфеты и игрушки. Взрослый должен попросить карапуза разделить между тремя – четырьмя куклами пять конфеток или яблок, а далее количество фруктов следует постепенно увеличивать до 8-10.
Важно! Малыш сначала будет раскладывать предметы медленно, делая большие паузы, но кричать на него категорически запрещено, лучше запастись терпением. После того, как сладости или фрукты были разделены между игрушками, пусть ребенок посчитает, сколько их получилось у каждой куклы и поведет итог
Если было 6 карамелек и их раздали трем куклам – каждой досталось по 2. После чего родитель должен объяснить своему ребенку, что «разделять» означает «раздать всем поровну»
После того, как сладости или фрукты были разделены между игрушками, пусть ребенок посчитает, сколько их получилось у каждой куклы и поведет итог. Если было 6 карамелек и их раздали трем куклам – каждой досталось по 2. После чего родитель должен объяснить своему ребенку, что «разделять» означает «раздать всем поровну».
Еще один игровой пример представлен делением на цифрах. Нужно сказать карапузу, что цифры – это те же фрукты или конфеты и приучать, что количество сладостей, которые следует разделить, принято называть «делимое». А люди, на которых делятся конфеты, – это «делитель».
Как разделить одну десятичную дробь на другую: столбиком, умножением
Делим одну десятичную дробь на другую
Для облегчения процесса, мы обязательно множим делимое и делитель на число с нулем: 10, 100, 1000 и числами с большим количеством нулей. Таким образом, делитель автоматически превращается в натуральное число. Потом действия, конечно же, повторяются. Все происходит благодаря свойствам деления и умножения.
Потом обычные числа просто делятся – методично и в столбик. Но помните, что изначально делились именно десятичные дроби. Разделить десятичную дробь на 0,1, 0,01, 0,001 — то же самое, что умножить ее на 10, 100, 1000 соответственно.
Чтобы разделить конечную десятичную дробь на другую, следует:
- Прибегнуть к переносу запятой в делимом и делителе на нужное количество знаков, которое превратит делитель в натуральное число. Если же знаков в делимом будет по каким-то причинам недостаточно, то с правой стороны дописываются необходимые нули.
- Далее просто делим дробь в столбик на то число, которое получилось. Как можно заметить, схема очень логична и элементарна.
Вот примеры решений столбиком:
Примеры с дробями на деление
Примеры с дробями на деление
Примеры с дробями на деление
По этому методу можно разделить натуральное число на десятичную дробь. Вот пример, как это выполняется:
Примеры с дробями на деление
Операция деления: основные обозначения
Очень часто в задачах вопрос сформулирован следующим образом: «Найти частное чисел 30 и 5» или «Определить делитель, если частное 42, а делимое — 7». Если ребенок не знает обозначений, то он не сможет приступить к решению такого примера. Поэтому начинать нужно с основ:
-
делимое — то число, которое и будет разделено;
-
делитель — число, на которое будет разделено делимое;
-
частное — результат.
Понять роль каждого показателя поможет простая игра. Есть 12 вкусных конфет, а в семье 4 человека. Как разделить сладости поровну? Всего 12 — это делимое. Количество человек — делитель. Ученику начальной школы будет легче понять задачу, если объяснить ему, что делимое всегда самое большое число. Невозможно разделить 4 на 12, а значит, пример будет выглядеть следующим образом: 12:4 = 3.
Как обучить малыша делению в столбик
Объяснение крохе разных математических действий – это хорошая подготовка к походу в класс, особенно математический класс. Если Вы решили перейти к обучению ребенка делению столбиком, значит такие действия как сложение, вычитание, и что такое таблица умножения он уже усвоил.
Если же это у него все еще вызывает некоторые сложности, то нужно подтянуть все эти знания. Стоит напомнить алгоритм действий предыдущих процессов, научить свободно пользоваться своими знаниями. В противном случае малыш просто запутается во всех процессах, и перестанет что-либо понимать.
Для облегчения понимания этого, сейчас есть таблица деления для малышей. Принцип у нее такой же, как и у таблиц умножения. Но нужна ли уже такая таблица, если малыш знает таблицу умножения? Это зависит от школы и учителя.
При формировании понятия «деление» нужно обязательно делать все в игровой форме, приводить все примеры на знакомых ребенку вещах и предметах.
Очень важно, чтобы все предметы были четного числа, чтобы малышу было ясно, что итогом являются равные части. Это будет правильно, поскольку позволит крохе осознать, что деление — процесс обратный умножению
Если предметы будут нечетного количества, то итог выйдет с остатком и малыш запутается.
Как правильно подготовить ребенка к восприятию нового материала?
Деление в столбик – это сложный процесс, который требует от ребенка определенных знаний. Чтобы выполнить деление, необходимо знать и уметь быстро вычитать, складывать, умножать. Немаловажными являются знания разрядов чисел.
Каждое из этих действий следует довести до автоматизма. Ребенок не должен долго думать, а также уметь вычитать складывать не только числа первого десятка, а в пределах сотни за несколько секунд.
Важно формировать правильное понятие деления, как математического действия. Еще при изучении таблиц умножения и деления, ребенок должен четко понимать, что делимое – это число, которое будет делиться на равные части, делитель – указывать, на сколько частей нужно разделить число, частное – это сам ответ